
Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 1 of 15

Apple IIGS Computer Information

Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006

Finally!

Many months ago, I inquired about the level of interest in some
technical information about various bits of Apple IIGS hardware. There
was a very positive response, especially for the information on the 3.5
Drive, so I sat down and started writing. Unfortunately, I never really
managed to finish it, and the project soon got shoved onto one of my
numerous back burners, where it sat essentially untouched until recently.

Anyway, I finally decided I'd wasted enough time, so here it is. Enjoy.
Please feel free to contact me if you have any questions, comments,
corrections, etc...

--
Controlling the 3.5 Drive Hardware on the Apple IIGS
Part 1 of 2: Lotsa Really Confusing Information

By Neil Parker

First, the standard Dire Warnings:

The following article is based on information found in several
publications (listed at the end of this article), my own disassemblies
of the relevant Apple IIGS ROM routines, and on some experimentation. I
can make no guarantees as to the accuracy of this information--it should
probably be considered as a starting point for your own explorations
rather than as an authoritative source.

Remember that when you use this information you're dealing directly with
the Naked Hardware, and the myriad protective features of the firmware
and operating system are not available. Should you be so foolish as to
try out this information with a non-expendable disk in the drive, I
won't be held responsible for any lost data.

(End of Dire Warnings.)

A note about machine code: All the sample routines in this article

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 6 of 15

RTS

Note that in the write routine, the first byte is written differently
than the rest--the STA Q7+1 activates write mode and writes the byte all
in one step.

In actual practice, you would probably want to use a loop to read and
store (or load and write) the data.

In addition to programming the IWM, it is also necessary to program the
drive itself, which is somewhat "smarter" than the 5.25-inch drive (even
though it's a "dumb" device).

The 3.5-inch drive contains several internal status bits which the
user's program can examine, and several internal control switches which
the user's program can use to control various functions of the drive.
These status and control bits are accessed by the CA0...LSTRB switches
mentioned above and by the SEL line (bit 7 of DISKREG). CA0...CA2 and
SEL form a 16-way switch which selects the desired control or status
function, and the LSTRB switch signals the drive to perform a control
function. The IIGS ROM uses the following routine to select a status or
control function (enter with desired function in A-reg):

SEL35 BIT CA0 ;set switches to known state
BIT CA1+1
BIT LSTRB
BIT CA2
LSR
BCC SEL35A
BIT CA2+1 ;if bit 0 on, turn on CA2

SEL35A LSR
PHA
LDA DISKREG
AND #$7F ;if bit 1 off, turn off SEL
BCC SEL35B
ORA #$80 ;else turn on SEL

SEL35B STA DISKREG
PLA
LSR
BCC SEL35C
BIT CA0+1 ;if bit 2 on, turn on CA0

SEL35C LSR
BCS SEL35D
BIT CA1 ;if bit 3 off, turn off CA1

SEL35D RTS

To read a status bit, turn Q6 off, Q7 on, and ENABLE on, configure
CA0...CA2 and SEL for the desired function, and read the status bit from
bit 7 of the IWM status register. The IIGS ROM uses the following code
to accomplish this:

STAT35 JSR SEL35 ;select desired status bit
BIT Q6+1

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 7 of 15

BIT Q7 ;test status register
RTS ;(returns result in processor N-flag)

The status bits are as follows:

 Param for
CA2 CA1 CA0 SEL STAT35 Function
--- --- --- --- --------- --------
off off off off $00 Step direction. 0=head set to step inward

 (toward higher-numbered tracks), 1=head set to
 step outward (toward lower-numbered tracks).

off off off on $02 Disk in place. 0=disk in drive, 1=drive is
 empty.

off off on off $04 Disk is stepping. 0=head is stepping between
 tracks, 1=head is not stepping.

off off on on $06 Disk locked. 0=disk is write protected,
 1=disk is write-enabled.

off on off off $08 Motor on. 0=spindle motor is spinning,
 1=motor is off.

off on off on $0A Track 0. 0=head is at track 0, 1=head is at
 some other track. This bit becomes valid
 beginning 12 msec after the step that places
 the head at track 0.

off on on off $0C *Disk switched? 0=user ejected disk by
 pressing the eject button, 1=disk not ejected.

off on on on $0E Tachometer. 60 pulses per disk revolution
on off off off $01 Instantaneous data from lower head. Reading

 this bit configures the drive to do I/O with
 the lower head.

on off off on $03 Instantaneous data from upper head. Reading
 this bit configures the drive to do I/O with
 the upper head.

on on off off $09 Number of sides. 0=single-sided drive,
 1=double-sided drive.

on on off on $0B *Disk ready for reading? 0=ready, 1=not ready.
 I'm not too sure about this bit--the firmware
 waits for this bit to go low before trying to
 read a sector address field.

on on on on $0F Drive installed. 0=drive is connected, 1=no
 drive is connected.

* Functions marked with an asterisk are used by the IIGS ROM but not
documented in any publication available to me. I'm fairly sure about
the function of status bit $0C (used by the firmware to test for
disk-switched errors), but I'm rather uncertain about status bit $0B
(if my programs neglect to test for it, the drive displays an annoying
tendency to start reading while the head is still stepping).

Note the the settings of most of these bits are "backwards"--0 means yes
and 1 means no.

To perform a control function, turn off LSTRB, configure CA0, CA1, and
SEL for the desired function, set CA2 to the desired value (all control
functions can be turned on or off), and then turn LSTRB on and back off.

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 8 of 15

The IIGS ROM uses the following code to accomplish this:

CONT35 JSR SEL35 ;select desired function
BIT LSTRB+1 ;strobe on
BIT LSTRB ;strobe off
RTS

The control functions are as follows:

 Param for
CA1 CA0 SEL CA2 CONT35 Function
--- --- --- --- --------- --------
off off off off $00 Set step direction inward (toward higher-

 numbered tracks.)
off off off on $01 Set step direction outward (toward lower-

 numbered tracks.
off off on on $03 *Reset disk-switched flag? (The firmware

 uses this to clear disk-switched errors.)
off on off off $04 Step one track in current direction (takes

 about 12 msec).
on off off off $08 Turn spindle motor on.
on off off on $09 Turn spindle motor off.
on on off on $0D Eject the disk. This takes about 1/2 sec to

 complete. The drive may not recognize further
 control commands until this operation is
 complete.

* Again, the asterisk marks a function used by the ROM but not
documented in any publication available to me.

The following is a greatly simplified description of the steps that a
simple program might take to I/O with the 3.5-inch drive.

 Save SLTROMSEL and CYAREG
 Switch in internal slot 6 and set fast speed
 Turn off disk I/O switches (to insure a "safe" state)
 Select the 3.5-inch drive (turn on bit 6 of DISKREG)
 Set IWM mode register to $0F
 Select drive 1 or 2 (access SELECT or SELECT+1)
 Turn on drive (access ENABLE+1)
 Turn on spindle motor (LDA #$08; JSR CONT35)
 IF we don't know what track we're currently on
 THEN Set step direction=out (LDA #$01; JSR CONT35)

 WHILE Not at track 0 (LDA #$0A; JSR STAT35; BPL ...)
 DO Step one track (LDA #$04; JSR CONT35)
 WHILE still stepping (LDA #$04; JSR STAT35; BPL ...)
 DO nothing
 END WHILE
 END WHILE
 Set current track=0

 END IF
 IF current track < desired track
 THEN Set step direction=in

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 9 of 15

 Set number of steps= desired track - current track
 ELSE IF current track > desired track
 THEN Set step direction=out

 Set number of steps= current track - desired track
 ELSE Set number of steps=0
 END IF
 WHILE number of steps > 0
 DO Step one track

WHILE still stepping
DO nothing
END WHILE
number of steps -= 1

 END WHILE
 Set current track= desired track
 Select desired side (LDA #$01 or LDA #$03; JSR STAT35)
 WHILE not ready to read (LDA #$0B; JSR STAT35; BMI ...)
 DO nothing
 END WHILE
 Read or write your data (this is the FUN part!)
 Turn off spindle motor (LDA #$09; JSR CONT35)
 Turn off drive (LDA ENABLE)
 Turn off CA0...LSTRB
 Set IWM mode register to $00
 Deselect 3.5 drive (turn off bit 6 of DISKREG)
 Restore slot and speed configuration
 Return to caller

You will probably notice that I glossed over the most important
part--the "read or write your data" part. The basic method is to use
routines like those listed above under the description of the IWM data
register. Unfortunately, the data must undergo considerable preparation
before writing and after reading. Those of you who are lucky enough to
own a copy of _Beneath_Apple_DOS_ will understand the kind of work that
is necessary. For those not so lucky, I must plead that a proper
discussion would require another article every bit as long as this one.
Rather than try to tackle that subject here, I will content myself with
providing a sample program (with commented source code) which shows one
way the above information can be put together to make a working program.
I'll be posting it in a separate article a few minutes after this one.

REFERENCES:

Apple Computer, Inc., _Apple_IIGS_Firmware_Reference_. This contains a
lengthy description of the SmartPort firmware, which includes some clues
as to the functioning of the 3.5 Drive hardware and a diagram of the
layout of an individual block of data. You will also need Apple IIGS
Technical Note 25, which contains some error corrections.

Apple Computer, Inc., _Apple_IIGS_Hardware_Reference_. This contains a
description of the disk interface register (DISKREG, $C031) and the
internal registers of the IWM chip. You will also need Apple IIGS
Technical Note 30, which corrects numerous errors in the IWM
descriptions.

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 10 of 15

Apple Computer, Inc., _Inside_Macontosh,_Volume_III_. This contains a
description of most of the 3.5 Drive status and control bits.

Apple Computer, Inc., _Macintosh_Family_Hardware_Reference_. The 3.5
Drive information from Inside Macintosh is also reprinted in this book
(in several different locations).

Don Worth and Pieter Lechner, _Beneath_Apple_DOS_, Quality Software,
Reseda, CA, 1981. This is THE classic reference for anything and
everything having to do with DOS 3.3 and the 5.25 Drive hardware.
Although the 3.5 Drive is a much more complex and powerful device, and
uses a slightly different data format, much of the low-level information
in this book is still quite relevant.

Don Worth and Pieter Lechner, _Beneath_Apple_ProDOS_, Reston Publishing
Company, Reston, VA, 1984. This does for ProDOS what _Beneath_Apple_
DOS did for DOS 3.3. It contains a somewhat abbreviated version of the
previous volume's description of low-level formatting, and in addition
offers some valuable information on the functioning of the disk
interface hardware.

 - Neil Parker

(Opinions are those of the author, and do not necessarily represent the
opinions of anybody else anywhere.)
--
Neil Parker No cute ASCII art...no cute quote...no cute
parker@corona.uoregon.edu disclaimer...no deposit, no return...
parkern@jacobs.cs.orst.edu (This space intentionally left blank:)
Controlling the 3.5 Drive Hardware on the Apple IIGS
Part 2 of 2: A real live working program!

By Neil Parker

The program listed below was written to illustrate the steps necessary
to control the hardware of the 3.5 Drive from your own programs, without
the use of the operating system or the firmware. It is essentially a
3.5-inch version of the DUMP program by Don Worth which was printed in
"Beneath Apple DOS." It will read a track from a 3.5-inch disk into
your Apple's memory, in its raw, encoded form.

Included below are a commented source code listing and a hex dump
suitable for typing directly into the System Monitor (or capturing into
a text file and EXECing).

Instructions:

First, boot DOS 3.3 or ProDOS 8. DUMP3.5 should be compatible with
either operating system. If you booted ProDOS, get into BASIC.SYSTEM.
When you see the] prompt, type "BLOAD DUMP3.5", and then "CALL-151".
Store the number of the track you wish to examine in memory location 6,
and the disk side you wish to examine (0 for the lower side, anything
else for the upper side) in location 7. Put the disk to be examined in
Drive 1, and type "900G". The raw track data will then be found in

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 11 of 15

memory locations $1000 through $7FFF (this buffer is much longer than
an actual track, so the data will most likely be repeated several times
in the buffer).

For example,

]BLOAD DUMP3.5 (Load the program)
]CALL-151 (Enter the Monitor)
*6:20 (Select track $20)
*7:1 (Select upper side)
*900G (Run DUMP3.5 (don't forget to insert the disk first))
*1000.10FF (Examine the first 256 bytes of the track)

The usual Dire Warnings apply: I make no guarantees whatsoever for this
program. I have tested it, and it seems to work on my computer, but I
recommend using it ONLY on expendable disks, and ONLY with the
write-protect hole open. I assume no responsibility for any damage
which may result from the use or misuse of this program.

Be especially careful if you enter either the assemby listing or the hex
dump by hand--the slightest typographical error could turn a benign tool
into a malevolent disk-eating monster.

I hope this program helps clarify the disk access process. If there is
enough interest in an explanation of how to interpret what it accesses,
it might be possible to talk me into writing up an explanation of the
block encoding process. (I recommend first reading "Beneath Apple DOS"
(if you can find a copy), and also the SmartPort chapter of the Firmware
Reference.)

 - Neil Parker

;***
; DUMP3.5--Dump a track of a 3.5-inch disk to memory. (IIGS only)
;
; By Neil Parker--inspired by Don Worth's DUMP program from "Beneath
; Apple DOS"
;
; Inputs: $06 = Track to be dumped
; $07 = Side to be dumped (0=lower side, non-0=upper side)
; Outputs: $1000-$7FFF = raw track data
;
; Example:
; *6:20 1 (Select track $20, upper side)
; *900G (Run DUMP3.5)
; *1000.10FF (Examine part of the track)
;***

 ORG $900
TRACK EQU 6 ;Track number
SIDE EQU 7 ;Side number
PTR EQU 8
BUFFER EQU $1000 ;Start address for track data
SLTROMSEL EQU $C02D ;Select internal/external ROMs for slots
DISKREG EQU $C031 ;Select 3.5/5.25 drive, control SEL line

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 12 of 15

CYAREG EQU $C036 ;System speed and motor-on-detect bits
CA0 EQU $C0E0 ;Phase 0, 3.5 drive control
CA1 EQU $C0E2 ;Phase 1, 3.5 drive control
CA2 EQU $C0E4 ;Phase 2, 3.5 drive control
LSTRB EQU $C0E6 ;Phase 3, control strobe
ENABLE EQU $C0E8 ;Turn drive off/on
SELECT EQU $C0EA ;Select drive 1/2
Q6 EQU $C0EC
Q7 EQU $C0EE
;
 LDA SLTROMSEL ;Get slot 6 status,
 PHA ;save it,
 AND #$BF ;force internal ROM+I/O for Slot 6
 STA SLTROMSEL
 LDA CA0 ;Clear disk I/O latches
 LDA CA1
 LDA CA2
 LDA LSTRB
 LDA ENABLE ;Insure that drive is off
 LDA SELECT ;Select drive 1
 LDA Q6 ;Set IWM for reading (a "safe" state)
 LDA Q7
 LDA #$F ;Configure IWM for 3.5 access
 JSR SELIWM
 LDA DISKREG ;Save old DISKREG
 PHA
 ORA #$40 ;Select 3.5 drive
 STA DISKREG
 LDA ENABLE+1 ;Turn drive on
 LDA #2 ;Is there a disk in the drive?
 JSR SEL35
 JSR TEST35
 BPL THERE ;If so, read
 JMP DONE ;otherwise quit
THERE LDA #8 ;Turn motor on
 JSR SEL35
 JSR TRIG35
 LDA #1 ;Set step direction=outward
 JSR SEL35
 JSR TRIG35
TSTTRK0 LDA #$A ;Are we at track 0 yet?
 JSR SEL35
 JSR TEST35
 BPL ATTRK0 ;If so, go read
 LDA #4 ;otherwise do a step
 JSR SEL35
 JSR TRIG35
SEEKING0 JSR TEST35 ;Step still in progress?
 BPL SEEKING0 ;If so, loop until step done
 BMI TSTTRK0 ;otherwise go see if we're at track 0 yet
ATTRK0 LDX TRACK ;What track did the user want?
 BEQ DUMP ;If track 0, we're already there--go read
 LDA #0 ;else set step direction=inward
 JSR SEL35

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 13 of 15

 JSR TRIG35
SEEK LDA #4 ;Do a step
 JSR SEL35
 JSR TRIG35
SEEKING JSR TEST35 ;Step still in progress?
 BPL SEEKING ;If so, loop until step done
 DEX ;otherwise see if we've stepped enough yet
 BNE SEEK ;If not, go step again
DUMP LDA #$B ;Disk ready for reading yet?
 JSR SEL35
READYT JSR TEST35
 BMI READYT ;Loop until disk ready
 LDA SIDE ;What side did the user want?
 BEQ SIDE1 ;If 0, set lower side
 LDA #3 ;else set upper side
 BNE SETSIDE
SIDE1 LDA #1
SETSIDE JSR SEL35
 JSR TEST35
 PHP ;Save interrupt status
 SEI ;Don't let anything interrupt us
 LDA CYAREG ;Save old system speed
 PHA
 AND #$FB ;Set speed=fast
 ORA #$80
 STA CYAREG
 LDA #<BUFFER ;Initialize read buffer
 STA PTR ;(NOTE: For DOS TOOL KIT or EDASM assembler,
 LDA #>BUFFER ;change #> to #< and #< to #>.)
 STA PTR+1
 LDY #0
DUMPLP LDA Q6 ;Read a byte
 BPL DUMPLP ;Loop until we have a valid byte
 STA (PTR),Y ;Store byte in buffer
 INC PTR ;Advance buffer pointer
 BNE DUMPLP
 INC PTR+1
 LDA PTR+1 ;Buffer full yet?
 CMP #$80
 BCC DUMPLP ;If not, go read some more
 PLA ;Done. Restore system speed
 STA CYAREG
 PLP ;Restore interrupt status
 LDA #9 ;Turn motor off
 JSR SEL35
 JSR TRIG35
DONE LDA ENABLE ;Turn drive off
 LDA CA0 ;Clear disk I/O latches
 LDA CA1
 LDA CA2
 LDA LSTRB
 PLA ;Restore old DISKREG value
 STA DISKREG

 LDA #0 ;Configure IWM for 5.25 access

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 14 of 15

 JSR SELIWM
 PLA ;Restore original slot configuration
 STA SLTROMSEL
 RTS ;Amen.
;
;Subroutine to select 3.5 drive status/control registers
;Enter with accumulator=desired status:
; Bit 0=CA2 status
; Bit 1=SEL status
; Bit 2=CA0 status
; Bit 3=CA1 status
;
SEL35 BIT CA0
 BIT CA1+1
 BIT LSTRB
 BIT CA2
 LSR ;If bit 0 set, turn on CA2
 BCC S35A
 BIT CA2+1
S35A LSR ;If bit 1 set, turn on SEL
 PHA
 LDA DISKREG
 AND #$7F
 BCC S35B
 ORA #$80
S35B STA DISKREG
 PLA
 LSR ;If bit 2 set, turn on CA0
 BCC S35C
 BIT CA0+1
S35C LSR ;If bit 3 set, turn on CA1
 BCS S35D
 BIT CA1
S35D RTS
;
;Subroutine to read the status of the 3.5 drive
;First call SEL35 to select register to examine
;Result is in processor N (negative) flag
;
TEST35 BIT Q6+1
 BIT Q7
 RTS
;
;Subroutine to perform a 3.5 drive control function
;First call SEL35 to select function to be performed
;
TRIG35 BIT LSTRB+1
 BIT LSTRB
 RTS
;
;Subroutine to configure the IWM chip
;Before calling, make sure drive is OFF!
;Call with accumulator=desired Mode Register value
; A=$00 for 5.25 drive

Apple IIGS Computer Information
Controlling the 3.5 Drive Hardware on the Apple IIGS

http://wiretap.area.com/Gopher/Library/Techdoc/Hardware/iwmiigs.txt
22 January 2006 -- 15 of 15

; A=$0F for 3.5 drive
;
SELIWM TAY
 BIT Q6+1 ;Prepare to access Mode & Status Regs.
 JMP SELIWM2 ;First see if it's already set like we want it
SELIWM1 TYA
 STA Q7+1 ;Try writing to Mode Reg.
SELIWM2 TYA
 EOR Q7 ;Compare input to Status Reg.
 AND #$1F
 BNE SELIWM1 ;If not the same, try writing again
 BIT Q6 ;else prepare IWM for data
 RTS

Here is the hext dump corresponding to the above assembler listing.
This can be entered by hand into the Monitor, or you can capture it into
a text file, put "CALL-151" at the beginning and "3D0G" and "BSAVE
DUMP3.5,A$900,L$145" at the end and EXEC it to create the program.

900:AD 2D C0 48 29 BF 8D 2D C0 AD E0 C0 AD E2 C0 AD
910:E4 C0 AD E6 C0 AD E8 C0 AD EA C0 AD EC C0 AD EE
920:C0 A9 0F 20 2E 0A AD 31 C0 48 09 40 8D 31 C0 AD
930:E9 C0 A9 02 20 F2 09 20 20 0A 10 03 4C D5 09 A9
940:08 20 F2 09 20 27 0A A9 01 20 F2 09 20 27 0A A9
950:0A 20 F2 09 20 20 0A 10 0F A9 04 20 F2 09 20 27
960:0A 20 20 0A 10 FB 30 E7 A6 06 F0 18 A9 00 20 F2
970:09 20 27 0A A9 04 20 F2 09 20 27 0A 20 20 0A 10
980:FB CA D0 F0 A9 0B 20 F2 09 20 20 0A 30 FB A5 07
990:F0 04 A9 03 D0 02 A9 01 20 F2 09 20 20 0A 08 78
9A0:AD 36 C0 48 29 FB 09 80 8D 36 C0 A9 00 85 08 A9
9B0:10 85 09 A0 00 AD EC C0 10 FB 91 08 E6 08 D0 F5
9C0:E6 09 A5 09 C9 80 90 ED 68 8D 36 C0 28 A9 09 20
9D0:F2 09 20 27 0A AD E8 C0 AD E0 C0 AD E2 C0 AD E4
9E0:C0 AD E6 C0 68 8D 31 C0 A9 00 20 2E 0A 68 8D 2D
9F0:C0 60 2C E0 C0 2C E3 C0 2C E6 C0 2C E4 C0 4A 90
A00:03 2C E5 C0 4A 48 AD 31 C0 29 7F 90 02 09 80 8D
A10:31 C0 68 4A 90 03 2C E1 C0 4A B0 03 2C E2 C0 60
A20:2C ED C0 2C EE C0 60 2C E7 C0 2C E6 C0 60 A8 2C
A30:ED C0 4C 39 0A 98 8D EF C0 98 4D EE C0 29 1F D0
A40:F4 2C EC C0 60

--
Neil Parker No cute ASCII art...no cute quote...no cute
parker@corona.uoregon.edu disclaimer...no deposit, no return...
parkern@jacobs.cs.orst.edu (This space intentionally left blank:)

